1,201 research outputs found

    Design and Evaluation of Magnetic Hall Effect Tactile Sensors for Use in Sensorized Splints

    Get PDF
    Splinting techniques are widely used in medicine to inhibit the movement of arthritic joints. Studies into the effectiveness of splinting as a method of pain reduction have generally yielded positive results, however, no significant difference has been found in clinical outcomes between splinting types. Tactile sensing has shown great promise for the integration into splinting devices and may offer further information into applied forces to find the most effective methods of splinting. Hall effect-based tactile sensors are of particular interest in this application owing to their low-cost, small size, and high robustness. One complexity of the sensors is the relationship between the elastomer geometry and the measurement range. This paper investigates the design parameters of Hall effect tactile sensors for use in hand splinting. Finite element simulations are used to locate the areas in which sensitivity is high in order to optimise the deflection range of the sensor. Further simulations then investigate the mechanical response and force ranges of the elastomer layer under loading which are validated with experimental data. A 4 mm radius, 3 mm-thick sensor is identified as meeting defined sensing requirements for range and sensitivity. A prototype sensor is produced which exhibits a pressure range of 45 kPa normal and 6 kPa shear. A proof of principle prototype demonstrates how this can be integrated to form an instrumented splint with multi-axis sensing capability and has the potential to inform clinical practice for improved splinting

    Does Pain at an Earlier Stage of Chondropathy Protect Female Mice Against Structural Progression After Surgically Induced Osteoarthritis?

    Get PDF
    OBJECTIVE: Female C57BL/6 mice exhibit less severe chondropathy than male mice. This study was undertaken to test the robustness of this observation and explore underlying mechanisms. METHODS: Osteoarthritis was induced in male and female C57BL/6 or DBA/1 mice (n = 6-15 per group) by destabilization of the medial meniscus (DMM) or partial meniscectomy (PMX). Some mice were ovariectomized (OVX) (n = 30). In vivo repair after focal cartilage defect or joint immobilization (sciatic neurectomy) following DMM was assessed. Histologic analysis, evaluation of gene expression in whole knees, and behavioral analysis using Laboratory Animal Behavior Observation Registration and Analysis System (LABORAS) and Linton incapacitance testing (n = 7-10 mice per group) were performed. RESULTS: Female mice displayed less severe chondropathy (20-75% reduction) across both strains and after both surgeries. Activity levels after PMX were similar for male and female mice. Some repair-associated genes were increased in female mouse joints after surgery, but no repair differences were evident in vivo. Despite reduced chondropathy, female mice developed pain-like behavior at the same time as male mice. At the time of established pain-like behavior (10 weeks after PMX), pain-associated genes were significantly up-regulated in female mice, including Gdnf (mean ± SEM fold change 2.54 ± 0.30), Nrtn (6.71 ± 1.24), Ntf3 (1.92 ± 0.27), and Ntf5 (2.89 ± 0.48) (P < 0.01, P < 0.01, P < 0.05, and P < 0.001, respectively, versus male mice). Inflammatory genes were not regulated in painful joints in mice of either sex. CONCLUSION: We confirm strong structural joint protection in female mice that is not due to activity or intrinsic repair differences. Female mice develop pain at the same time as males, but induce a distinct set of neurotrophins. We speculate that heightened pain sensitivity in female mice protects the joint by preventing overuse

    Adaptive Evolution of Cooperation through Darwinian Dynamics in Public Goods Games

    Get PDF
    The linear or threshold Public Goods game (PGG) is extensively accepted as a paradigmatic model to approach the evolution of cooperation in social dilemmas. Here we explore the significant effect of nonlinearity of the structures of public goods on the evolution of cooperation within the well-mixed population by adopting Darwinian dynamics, which simultaneously consider the evolution of populations and strategies on a continuous adaptive landscape, and extend the concept of evolutionarily stable strategy (ESS) as a coalition of strategies that is both convergent-stable and resistant to invasion. Results show (i) that in the linear PGG contributing nothing is an ESS, which contradicts experimental data, (ii) that in the threshold PGG contributing the threshold value is a fragile ESS, which cannot resist the invasion of contributing nothing, and (iii) that there exists a robust ESS of contributing more than half in the sigmoid PGG if the return rate is relatively high. This work reveals the significant effect of the nonlinearity of the structures of public goods on the evolution of cooperation, and suggests that, compared with the linear or threshold PGG, the sigmoid PGG might be a more proper model for the evolution of cooperation within the well-mixed population

    A comparative analysis of predictive models of morbidity in intensive care unit after cardiac surgery – Part II: an illustrative example

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Popular predictive models for estimating morbidity probability after heart surgery are compared critically in a unitary framework. The study is divided into two parts. In the first part modelling techniques and intrinsic strengths and weaknesses of different approaches were discussed from a theoretical point of view. In this second part the performances of the same models are evaluated in an illustrative example.</p> <p>Methods</p> <p>Eight models were developed: Bayes linear and quadratic models, <it>k</it>-nearest neighbour model, logistic regression model, Higgins and direct scoring systems and two feed-forward artificial neural networks with one and two layers. Cardiovascular, respiratory, neurological, renal, infectious and hemorrhagic complications were defined as morbidity. Training and testing sets each of 545 cases were used. The optimal set of predictors was chosen among a collection of 78 preoperative, intraoperative and postoperative variables by a stepwise procedure. Discrimination and calibration were evaluated by the area under the receiver operating characteristic curve and Hosmer-Lemeshow goodness-of-fit test, respectively.</p> <p>Results</p> <p>Scoring systems and the logistic regression model required the largest set of predictors, while Bayesian and <it>k</it>-nearest neighbour models were much more parsimonious. In testing data, all models showed acceptable discrimination capacities, however the Bayes quadratic model, using only three predictors, provided the best performance. All models showed satisfactory generalization ability: again the Bayes quadratic model exhibited the best generalization, while artificial neural networks and scoring systems gave the worst results. Finally, poor calibration was obtained when using scoring systems, <it>k</it>-nearest neighbour model and artificial neural networks, while Bayes (after recalibration) and logistic regression models gave adequate results.</p> <p>Conclusion</p> <p>Although all the predictive models showed acceptable discrimination performance in the example considered, the Bayes and logistic regression models seemed better than the others, because they also had good generalization and calibration. The Bayes quadratic model seemed to be a convincing alternative to the much more usual Bayes linear and logistic regression models. It showed its capacity to identify a minimum core of predictors generally recognized as essential to pragmatically evaluate the risk of developing morbidity after heart surgery.</p

    Fibroblast growth factor 2 drives changes in gene expression following injury to murine cartilage in vitro and In Vivo

    Get PDF
    Objective The articular cartilage is known to be highly mechanosensitive, and a number of mechanosensing mechanisms have been proposed as mediators of the cellular responses to altered mechanical load. These pathways are likely to be important in tissue homeostasis as well as in the pathogenesis of osteoarthritis. One important injury-activated pathway involves the release of pericellular fibroblast growth factor 2 (FGF-2) from the articular cartilage. Using a novel model of murine cartilage injury and surgically destabilized joints in mice, we examined the extent to which FGF-2 contributes to the cellular gene response to injury. Methods Femoral epiphyses from 5-week-old wild-type mice were avulsed and cultured in serum-free medium. Explant lysates were Western blotted for phospho-JNK, phospho-p38, and phospho-ERK or were fixed for immunohistochemical analysis of the nuclear translocation of p65 (indicative of NF-κB activation). RNA was extracted from injured explants, rested explants that had been stimulated with recombinant FGF-2 or FGF-18, or whole joints from either wild-type mice or FGF-2−/− mice. Reverse transcription–polymerase chain reaction was performed to examine a number of inflammatory response genes that had previously been identified in a microarray analysis. Results Murine cartilage avulsion injury resulted in rapid activation of the 3 MAP kinase pathways as well as NF-κB. Almost all genes identified in murine joints following surgical destabilization were also regulated in cartilage explants upon injury. Many of these genes, including those for activin A (Inhba), tumor necrosis factor–stimulated gene 6 (Tnfaip6), matrix metalloproteinase 19 (Mmp19), tissue inhibitor of metalloproteinases 1 (Timp1), and podoplanin (Pdpn), were significantly FGF-2 dependent following injury to cartilage in vitro and to joint tissues in vivo. Conclusion FGF-2–dependent gene expression occurs in vitro and in vivo in response to cartilage/joint injury in mice

    Acute molecular changes in synovial fluid following human knee injury: association with early clinical outcomes

    Get PDF
    Objective To investigate whether molecules found to be up-regulated within hours of surgical joint destabilization in the mouse are also elevated in the analogous human setting of acute knee injury, how this molecular response varies between individuals, and whether it is related to patient-reported outcomes in the 3 months after injury. Methods Seven candidate molecules were analyzed in blood and synovial fluid (SF) from 150 participants with recent structural knee injury at baseline (<8 weeks from injury) and in blood at 14 days and 3 months following baseline. Knee Injury and Osteoarthritis Outcome Score 4 (KOOS4) was obtained at baseline and 3 months. Patient and control samples were compared using Meso Scale Discovery platform assays or enzyme-linked immunosorbent assay. Results Six of the 7 molecules were significantly elevated in human SF immediately after injury: interleukin-6 (IL-6), monocyte chemotactic protein 1, matrix metalloproteinase 3 (MMP-3), tissue inhibitor of metalloproteinases 1 (TIMP-1), activin A, and tumor necrosis factor–stimulated gene 6 (TSG-6). There was low-to-moderate correlation with blood measurements. Three of the 6 molecules were significantly associated with baseline KOOS4 (those with higher SF IL-6, TIMP-1, or TSG-6 had lower KOOS4). These 3 molecules, MMP-3, and activin A were all significantly associated with greater improvement in KOOS4 over 3 months, after adjustment for other relevant factors. Of these, IL-6 alone significantly accounted for the molecular contribution to baseline KOOS4 and change in KOOS4 over 3 months. Conclusion Our findings validate relevant human biomarkers of tissue injury identified in a mouse model. Analysis of SF rather than blood more accurately reflects this response. The response is associated with patient-reported outcomes over this early period, with SF IL-6 acting as a single representative marker. Longitudinal outcomes will determine if these molecules are biomarkers of subsequent disease risk

    Self-assembly, Self-organization, Nanotechnology and vitalism

    No full text
    International audienceOver the past decades, self-assembly has attracted a lot of research attention and transformed the relations between chemistry, materials science and biology. The paper explores the impact of the current interest in self-assembly techniques on the traditional debate over the nature of life. The first section describes three different research programs of self-assembly in nanotechnology in order to characterize their metaphysical implications: -1- Hybridization ( using the building blocks of living systems for making devices and machines) ; -2- Biomimetics (making artifacts mimicking nature); -3- Integration (a composite of the two previous strategies). The second section focused on the elusive boundary between selfassembly and self-organization tries to map out the various positions adopted by the promoters of self-assembly on the issue of vitalism

    Join forces or cheat: evolutionary analysis of a consumer-resource system

    Get PDF
    International audienceIn this contribution we consider a seasonal consumer-resource system and focus on the evolution of consumer behavior. It is assumed that consumer and resource individuals live and interact during seasons of fixed lengths separated by winter periods. All individuals die at the end of the season and the size of the next generation is determined by the the consumer-resource interaction which took place during the season. Resource individuals are assumed to reproduce at a constant rate, while consumers have to trade-off between foraging for resources, which increases their reproductive abilities, or reproducing. Firstly, we assume that consumers cooperate in such a way that they maximize each consumer's individual fitness. Secondly, we consider the case where such a population is challenged by selfish mutants who do not cooperate. Finally we study the system dynamics over many seasons and show that mutants eventually replace the original cooperating population, but are finally as vulnerable as the initial cooperating consumers

    A detailed clinical and molecular survey of subjects with nonsyndromic USH2A retinopathy reveals an allelic hierarchy of disease-causing variants.

    Get PDF
    Defects in USH2A cause both isolated retinal disease and Usher syndrome (ie, retinal disease and deafness). To gain insights into isolated/nonsyndromic USH2A retinopathy, we screened USH2A in 186 probands with recessive retinal disease and no hearing complaint in childhood (discovery cohort) and in 84 probands with recessive retinal disease (replication cohort). Detailed phenotyping, including retinal imaging and audiological assessment, was performed in individuals with two likely disease-causing USH2A variants. Further genetic testing, including screening for a deep-intronic disease-causing variant and large deletions/duplications, was performed in those with one likely disease-causing change. Overall, 23 of 186 probands (discovery cohort) were found to harbour two likely disease-causing variants in USH2A. Some of these variants were predominantly associated with nonsyndromic retinal degeneration ('retinal disease-specific'); these included the common c.2276 G>T, p.(Cys759Phe) mutation and five additional variants: c.2802 T>G, p.(Cys934Trp); c.10073 G>A, p.(Cys3358Tyr); c.11156 G>A, p.(Arg3719His); c.12295-3 T>A; and c.12575 G>A, p.(Arg4192His). An allelic hierarchy was observed in the discovery cohort and confirmed in the replication cohort. In nonsyndromic USH2A disease, retinopathy was consistent with retinitis pigmentosa and the audiological phenotype was variable. USH2A retinopathy is a common cause of nonsyndromic recessive retinal degeneration and has a different mutational spectrum to that observed in Usher syndrome. The following model is proposed: the presence of at least one 'retinal disease-specific' USH2A allele in a patient with USH2A-related disease results in the preservation of normal hearing. Careful genotype-phenotype studies such as this will become increasingly important, especially now that high-throughput sequencing is widely used in the clinical setting.European Journal of Human Genetics advance online publication, 4 February 2015; doi:10.1038/ejhg.2014.283
    • …
    corecore